מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
מוזיאון הטבע
אמנויות
מוח
הנדסה וטכנולוגיה
חברה
מדעים מדויקים
ניהול ומשפט
סביבה וטבע
רוח
רפואה ומדעי החיים

מחקר

12.07.2022
בזמן שישנת

האם נוכל לגלות אם אדם שנחשב למחוסר הכרה קולט ומבין את הנאמר סביבו?

  • מוח
  • הנדסה וטכנולוגיה
  • רפואה ומדעי החיים

תגלית חדשה של אוניברסיטת תל אביב עשויה לסייע לפתור את התעלומה המדעית: כיצד הופך המוח הער את הקלט החושי לחוויה מודעת. החוקרות והחוקרים הסתמכו על נתונים שהתקבלו מאלקטרודות שהושתלו במעמקי המוח האנושי לצרכים רפואיים, כדי לבחון הבדלים בתגובת קליפת המוח לצלילים שונים שמושמעים לנבדק במצבי ערות לעומת שינה. הם הופתעו לגלות שהתגובה המוחית לצלילים עוצמתית גם במהלך השינה בכל המדדים, מלבד אחד: רמת גלי האלפא-בטא הקשורה למידת תשומת הלב, הקשב, והציפיות לגבי צלילים הנקלטים. המשמעות: במצב שינה המוח שומע את הצליל אך לא מצליח להתמקד בו ולזהות אותו, ועל כן תפיסה מודעת של הצליל אינה קיימת במצב של שינה. לדברי צוות המחקר, מדובר לראשונה במדד כמותי ששונה באופן דרמטי בין אדם ער שמודע לצלילים לבין תגובת שמע במצבי שינה, שמתאפיינים בחוסר הכרה וניתוק מהסביבה, שיוכל לשמש כבסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה.

 

לצלול (פיזית) למעמקי המוח האנושי

המחקר נערך בהובלת ד"ר חנה חייט ובסיוע של ד"ר עמית מרמלשטיין מהמעבדה של פרופ' יובל ניר מבית הספר לרפואה ע"ש סאקלר, בית הספר סגול למדעי המוח, והמחלקה להנדסה ביו-רפואית, וכן בהובלת פרופ' יצחק פריד מהמרכז הרפואי של אוניברסיטת UCLA בארה"ב. עוד השתתפו במחקר: ד"ר אהרון קרום וד"ר יניב סלע מקבוצת המחקר של פרופ' ניר וכן ד"ר עידו שטראוס וד"ר פיראס פאהום מהמרכז הרפואי תל אביב (איכילוב). המחקר פורסם בכתב העת היוקרתי Nature Neuroscience.

 

פרופ' ניר מסביר כי ייחודו של המחקר הוא בכך שהוא מסתמך על נתונים מאלקטרודות שהושתלו במעמקי המוח האנושי ומנטרות את פעילות המוח ברזולוציה גבוהה, כולל ברמת הנוירון (תא עצב) הבודד. לדבריו, מסיבות מובנות, לא ניתן להשתיל אלקטרודות במוחם של בני אדם לצורכי המדע, אך במחקר זה, החוקרים נעזרו במצב רפואי מיוחד שבו הושתלו אלקטרודות במוחם של חולי אפילפסיה, כדי לנטר את הפעילות המוחית באזורים השונים לקראת ניתוח שנועד לסייע להם. החולים התנדבו לבחון את תגובת המוח לגירויי שמע במצבי ערות לעומת שינה.

 

במסגרת המחקר, הוצבו ליד מיטות החולים רמקולים המשמיעים צלילים שונים. החוקרים השוו את הנתונים שהתקבלו מהאלקטרודות בנוגע לפעילות תאי העצב ולגלים חשמליים מקומיים באזורים שונים של המוח, בזמן ערות ובשלבים שונים של שינה. בסך הכול נאספו נתונים מכ-700 נוירונים, כ-50 נוירונים מכל נבדק, לאורך תקופה של 8 שנים.

 

ד"ר חנה חייט

 

הכל טמון בעוצמת גלי האלפא-בטא

"לאחר שצלילים נקלטים באוזן, האות נמסר מתחנה לתחנה בתוך המוח. עד לאחרונה רווחה הסברה שבמצבי שינה, האותות הללו דועכים במהירות כשהם מגיעים לקליפת המוח. במחקר שלנו גילינו להפתעתנו שגם במהלך השינה תגובת המוח חזקה ועשירה מהצפוי, ומתפשטת לאזורים רבים בקליפת המוח ומציתה תגובה דומה בעוצמתה לזו שנמדדה במצב של ערות. אולם בתכונה ספציפית אחת גילינו פער דרמטי בית הפעילות המוחית במצבי ערות ושינה - רמת הפעילות של גלי אלפא-ביתא", מסביר ד"ר חייט.

 

החוקרים מסבירים שגלי אלפא-ביתא (בין 10 ל-30 הרץ), קשורים לתהליכים של קשב וציפייה, שנשלטים על ידי  משוב (פידבק), מאזורים גבוהים של המוח. למעשה, במקביל להעברת המידע "מלמטה למעלה"  מקולטני החושים לאזורי עיבוד גבוהים, מתרחשת גם תנועה הפוכה: האזורים הגבוהים, שמסתמכים על ידע מוקדם שנצבר במוח, פועלים כמעין יד מכוונת ואקטיבית ושולחים מידע "מלמעלה למטה", כדי להדריך את אזורי החושים במה להתרכז, ממה להתעלם, וכדומה. כך לדוגמה, כשצליל מסוים נקלט באוזן, אותם אזורים גבוהים מזהים אם הצליל מוכר או חדש, אם הוא ראוי לתשומת לב או שאולי אין צורך להתייחס אליו. פעילות מוחית זו משתקפת כדיכוי של גלי אלפא-בטא, ואכן, מחקרים קודמים זיהו רמה גבוהה של גלים אלה במצבים של מנוחה והרדמה. על פי המחקר הנוכחי, עוצמת גלי האלפא-בטא היא למעשה ההבדל העיקרי בין מצבי ערות לשינה בכל הנוגע לתגובת המוח לגירויי שמע.

 

"ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו"

 

"לממצאים שלנו יש משמעות נרחבת, מעבר לגבולות הניסוי עצמו. ראשית, הם מספקים מפתח חשוב לשאלה העתיקה והמסקרנת מכל: מהו סוד התודעה? מהי הפעילות המוחית הייחודית שמאפשרת לנו להיות מודעים למתרחש סביבנו, ונעלמת כשאנו ישנים? גילינו קצה חוט חדש, ובמחקרים עתידיים נעמיק במנגנונים האחראים להבדל זה", אומר פרופ' ניר ומסכם "בנוסף, מכיוון שזיהינו מאפיין מוחי ספציפי שמבדיל בין מצבי הכרה וחוסר הכרה, יש בידינו לראשונה מדד כמותי שמאפשר להעריך את רמת המודעות  של הנבדק בתגובה לצלילים".

"על ידי שכלול מדידת רמת גלי האלפא-בטא במוח, תוך שימוש באמצעי ניטור נגישים שאינם פולשניים (כמו EEG), אנו מקווים שניתן יהיה, לדוגמא, לוודא במהלך ניתוח שהמטופל שרוי בהרדמה עמוקה ואינו חש דבר. באופן דומה, ניתן יהיה לבחון את מידת המודעות לסביבה של אדם דמנטי או של אדם במצב סיעודי שאינו מסוגל לתקשר עם סביבתו. במקרים כאלה, רמה נמוכה של גלי אלפא-בטא כתגובה לצלילים אף עשויה להעיד שאדם שנחשב למחוסר הכרה בעצם קולט ומבין את הנאמר סביבו. אנחנו מקווים שהממצאים שלנו ישמשו בסיס לפיתוח שיטות יעילות ונגישות למדידת רמת ההכרה של אנשים השרויים לכאורה במצבים שונים של חוסר הכרה."

 

פרופ' יובל ניר וד"ר עמית מרמלשטיין

מחקר

11.04.2022
האם החיסון בטוח? שאלו את החיישן!

טכנולוגיה חדישה תאפשר לקבוע את בטיחות החיסונים באמצעות חיישנים חכמים

  • הנדסה וטכנולוגיה
  • רפואה ומדעי החיים

רבות ורבים מתלבטים לגבי שימוש במוצר חדש שנכנס לשוק ומעדיפים לקבל המלצות ממי שכבר התנסה בו. על אחת כמה וכמה כשמדובר בתרופות ובחיסונים. כיום, המחקרים הקליניים לבדיקת בטיחות של חיסון חדש מסתמכים על דיווחים סובייקטיביים של הנבדקים, שבאופן טבעי עשויים לגרום להטיה של המחקר. מחקר חדש של אוניברסיטת תל אביב מאפשר לראשונה בעולם, לקבוע את הבטיחות של חיסונים חדשים באמצעות חיישנים חכמים ועל פי פרמטרים פיזיולוגיים אובייקטיביים. לדבריהם, כאשר מסתמכים על נתונים פיזיולוגיים ואובייקטיביים שמוזנים באמצעות חיישנים שמוצמדים לגוף - התוצאות הן ברורות וחד משמעיות.

 

הסוף לעידן הדיווח העצמי

במחקר הנוכחי, הצליח צוות החוקרים להוכיח שניתן לבדוק את יעילותו של חיסון חדש באמצעות חיישנים חכמים. המחקר נערך בזמן קבלת החיסון השני של הקורונה. המחקר נערך בהובלת ד"ר יפתח גפנר מהחוג לאפידמיולוגיה ורפואה מונעת בפקולטה לרפואה ע"ש סאקלר, ד"ר דן ימין וד"ר ארז שמואלי מהפקולטה להנדסה ע"ש איבי ואלדר פליישמן. הוא פורסם בכתב העת Communications Medicine מבית Nature.

 

"בשיטה המקובלת כיום, מחקרים קליניים שנועדו להעריך את בטיחותו של טיפול או של חיסון חדש נערכים באמצעות שאלונים של דיווח עצמי. החוקרים שואלים את הנבדקים איך הם מרגישים לפני ואחרי שקיבלו את הטיפול או החיסון. כמובן, מדובר בדיווח סובייקטיבי לחלוטין. גם כשפייזר ומודרנה פיתחו את החיסון נגד נגיף הקורונה החדש, עדיין הוכיחו את הבטיחות שלו באמצעות דיווח עצמי", מסביר ד"ר גפנר.

 

החוקרים ציידו את המתנדבים בחיישנים חדשניים ומאושרי FDA של חברת ביוביט הישראלית, שהודבקו לגופם ובדקו את תגובותיהם הפיזיולוגיות יום לפני קבלת החיסון ועד שלושה ימים אחריו. חיישנים אלו מנטרים 13 מדדים פיזיולוגיים כגון קצב לב, קצב נשימה, סטורציה (חמצן בדם), נפח פעימת לב, טמפרטורה, תפוקת לב ולחץ דם. התוצאות היו מפתיעות: מצד אחד החוקרים זיהו חוסר קשר משמעותי בין הדיווחים הסובייקטיביים על תופעות הלוואי למדידה בפועל. למשל, נבדקים שהעידו בשאלונים על כך שכאב להם הראש למרות שלא באמת כאב להם הראש ואחרים שאמרו שהם לא ישנו כל הלילה, למרות שבעצם הם ישנו שמונה שעות רצוף.

 

בנוסף, הם מצאו שתופעות הלוואי עולות ב-48 השעות הראשונות ואחר כך חוזרות לנורמה שלפני החיסון. כלומר, באמצעות הערכה ישירה לבטיחות החיסון ניתן לומר שישנה תגובה פיזיולוגית לחיסון ב 48 השעות הראשונות, ולאחר מכן הערכים מתייצבים חזרה.

 

"המסר שעולה מהמחקר שלנו הוא ברור", מסכם ד"ר גפנר. "ב-2022 הגיע הזמן לערוך בדיקה שהיא רציפה, רגישה ואובייקטיבית של בטיחות חיסונים וטיפולים חדשים. אין סיבה להסתמך על דיווחים עצמיים, ואין סיבה להמתין להופעה של תופעות לוואי נדירות כמו מיוקרדיטיס, דלקת שריר הלב, אירוע שקורה אחת ל-10,000. הרי אפשר למצוא סימנים מקדימים לדלקת באמצעות חיישנים מתקדמים, ובכך לזהות בכמה החיסון משנה מדדים פיזיולוגים ואת הסיכון לדלקת. מצד שני, כשמזמינים נבדקים למרפאה ובודקים  להם לחץ דם, מן הסתם לחץ הדם שלהם עולה כי הם נלחצים מהסיטואציה. מדידה רציפה בבית פותרת את הבעיות הללו באמצעות ניטור פשוט, נוח, זול ומדויק. זוהי הרפואה שאנו שואפים אליה בשנת 2022".

 

מימין: ד"ר ארז שמואלי, ד"ר יפתח גפנר ופרופ' דן ימין

מחקר

05.04.2022
הטכנולוגיה החדישה לביטול החזרת גלי אור ממשטחים

פריצת דרך פיזיקלית והנדסית מציעה שיטה יעילה יותר מהטכניקות הקיימות כיום לצמצום תופעת החזרת האור

  • הנדסה וטכנולוגיה

כאשר קרן אור עוברת מתווך אחד לשני, גם אם שניהם שקופים (כגון מאוויר לזכוכית), חלק מעוצמת האור מוחזר וחלק עובר. תופעה זו, אשר מתבטאת למשל בהשתקפות שאנו רואים כאשר מסתכלים החוצה בשעות החשיכה מחדר מואר דרך החלון, היא תופעה כללית של התפשטות גלים וקיימת גם בגלי רדיו, מיקרוגל, גלי קול, גלי לחץ, ואף בפונקציות הגל המתארות חלקיקים קוונטיים.

 

"תופעת ההחזרה החלקית נובעת מכך שלתווכים שונים תכונות אופטיות שונות," מסביר פרופ' קובי שויער. "כך למשל, ההחזרה החלקית מזגוגית החלון נובעת מכך שמהירות האור באוויר ובזכוכית הן שונות – האור מתקדם לאט יותר בזכוכית. תופעת ההד שאנו שומעים בקרבת מצוקים נובעת מסיבה דומה – גלי הקול יכולים להתקדם בקלות בחומרים מוצקים, במהירות גבוהה יותר מאשר מהירותם באוויר. ההבדל בין מהירות הקול באוויר ובסלע גורם להחזרה חלקית של גלי הקול והוא זה שיוצר את ההד."

 

מחקר חדש מציע שיטה חדשנית לביטול החזרת גלי אור ממשטחים, אשר מונעת החזרה של טווח רחב של אורכי גל או תדרים. המחקר נערך בהובלת פרופ' קובי שויער ופרופ' פבל גינזבורג מביה"ס להנדסת חשמל בפקולטה להנדסה ע"ש איבי ואלדר פליישמן, בשיתוף עם ד"ר דמיטרי פילונוב מהמכון לפיזיקה וטכנולוגיה במוסקבה, ופורסם לאחרונה בכתב העת היוקרתי Optics Express.

 

לנטרל את הגורם המפריע

במקרים רבים, מציינים החוקרים, תופעת ההחזרה החלקית מהווה גורם מפריע. במערכות תצפית ואופטיקה מורכבות כגון מיקרוסקופ, תופעת ההחזרה החלקית עלולה לגרום להפחתה דרמטית בעוצמת האור המגיעה לעין האנושית או לגלאי, ובכך לפגיעה משמעותית בביצועי המערכת. כדי להעניק פתרון לתופעת ההחזר החלקית על פני טווח תדירויות רחב, החוקרים ניגשו לבעיה מכיוון שונה לחלוטין.

 

פרופ' שויער מרחיב: "באופן כללי, על מנת להפחית את תופעת ההחזרה החלקית ניתן להשתמש ב'ציפוי נגד החזרות' (anti-reflection coating). ציפוי זה מתפקד כמהוד (באנגלית resonator) הגורם להתאבכות בונה של האור בכיוון ההתקדמות ולהתאבכות הורסת לאחור, וכך מידת ההחזרה פוחתת. ציפויים מסוג זה ניתן למצוא במגוון רחב של מערכות אופטיות ואקוסטיות, ואפילו במשקפי ראייה. החיסרון העיקרי של השיטה הוא יעילותה המוגבלת, אשר מתאימה לתדר יחיד, זהו תדר התהודה."

 

במערכות הנדרשות לטפל בטווח של אורכי גל או תדרים, לדוגמה משקפי ראייה או מיקרוסקופ, השיטה הקיימת אינה מבטלת לחלוטין את ההחזרה החלקית של האור. עקרונית, ניתן להרחיב את השיטה לטיפול בטווח של אורכי גל או תדרים, וזאת ע"י הרכבת ציפוי שכולל מספר שכבות מחומרים ועוביים שונים, אך בפועל קשה מאוד לתכנן ציפויים מרובי שכבות מכיוון שנדרשת אופטימיזציה מסובכת של עובי השכבות ותכונותיהן.

 

נעים להכיר: "מהוד לאור לבן"

על מנת להתגבר על מגבלת היעילות בשיטות הקיימות, פיתחו החוקרים התקן המכונה "מהוד לאור לבן". לדברי פרופ' שויער, "בניגוד למהודים רגילים, המאופיינים ע"י מספר מסוים ומוגבל של תדרי תהודה, המהוד החדש מסוגל להגיב לטווח רציף של תדרים. הרעיון שמאחורי השיטה החדשה הוא שימוש בתכונות הייחודיות של המהוד לאור לבן על מנת ליצור התאבכות הורסת של הגלים המוחזרים על פני כל טווח התהודה של המהוד ובאופן זה לבטלם. מימוש המהוד המיוחד מתאפשר הודות לשילוב של מספר שכבות בעלות תכונות אופטיות שונות, אלא שבניגוד לגישה הקונבנציונלית, התכנון הוא פשוט ואינו דורש אופטימיזציה ממוחשבת מסובכת."

 

החוקרים אימתו את תקפות הרעיון ע"י מימוש מבנה שמבטל החזרות בטווח תדרים רחב בתחום המיקרוגל. לשם כך, הם הרכיבו שני מוליכי גלים בעלי מאפיינים שונים והראו כי ניתן לבטל את ההחזרה החלקית אשר מתרחשת באופן רגיל, כאשר גלי מיקרוגל עוברים ממוליך גלים אחד לשני, ע"י מימוש מהוד אור לבן המורכב ממקטעים של מוליכי גלים בעלי מאפיינים שנבחרו בהתאם. כדי לשלוט במאפייני המקטעים המרכיבים את המהוד, החוקרים מילאו אותם במטא-חומרים שמומשו באמצעות הדפסה תלת ממדית.

 

פרופ' שויער מסכם באופטימיות: "קונספט המהוד לאור לבן הינו אוניברסלי וניתן למימוש לכל סוגי הגלים ובכל טווחי התדרים. ליכולת לבטל החזרות על פני טווח תדרים רחב עשויות להיות השלכות מרחיקות לכת ויישומים רבים כגון מערכות תצפית ודימות טובות יותר, מערכות תקשורת בעלות טווח וקצב מידע משופרים וכן פיתוח טכנולוגיות חמקנות."

מחקר

05.04.2022
לראשונה בעולם: רובוט שיכול להרים חפצים בגודל של מילימטר

צוות המחקר הצליח לחקות עקרון פעולה של חרקי מים זעירים ולתרגם אותו לתהליך מכני מבוקר שניתן ליישום טכנולוגי

  • הנדסה וטכנולוגיה

טכנולוגיה חדישה של אוניברסיטת תל אביב תאפשר לראשונה בעולם לרובוטים ימיים להרים חפצים זעירים שגודלם קטן ממילימטר. במסגרת המחקר, בנו החוקרים זרוע רובוטית עם ראש מיוחד שהודפס בתלת ממד ואשר יכול לייצב בועות אוויר על מנת ליצור "גשרים קפילריים" (בעלי תכונת הנימיות) שעשויים מאוויר בלבד. תכונת הנימיות משמעה שנוזלים מסוגלים "לטפס" במעלה צינורות דקים בהיעדר כוחות חיצוניים כמו כוח הכבידה, ולעתים אף בניגוד אליהם. לטענת החוקרים, הזרוע הרובוטית יכולה לשמש באוטומציה של ניסויים עם תאים ביולוגיים בסביבה מימית, בהתקנים מיקרוניים בסביבת נוזלים, במניפולציה וסידור של חפצים קטנים מתחת למים ואף בניקוי משטחים הטבולים בנוזל.

 

המחקר התבצע בהובלת ד"ר בת-אל פנחסיק, חברת סגל בכירה בביה"ס להנדסה מכנית בפקולטה להנדסה ע"ש איבי ואלדר פליישמן, יחד עם תלמידיה במעבדה לביו-מימטיקה של מערכות מכניות ופני שטח. המחקר פורסם על שער כתב העת היוקרתי ACS Applied Materials & Interfaces.

 

ללכת מתחת למים

החוקרים מסבירים כי מתחת למים חרקים רבים נעזרים בזיפים זעירים, שמאפשרים להם לכלוא ולייצב בועות אוויר דוחי מים המכסים את גופם. כשבועות אלו באות במגע עם משטחים, הן יוצרות גשרים עשויים מאוויר שמאפשרים לחרקים ללכת מתחת למים.

 

בצורה הזו, בדומה לחרקים, הצליחו החוקרים להראות שניתן להשתמש בגשרים נימיים של אוויר על מנת להרים ולמקם חפצים רבים קטנים וקלים (מסדר גודל של מילימטר ואף פחות מכך) מתחת למים, ואשר לא ניתן להרים ולשחרר בדרך אחרת. עם חפצים אלה ניתן למנות יריעות דקות, משטחים מחוררים או מחוספסים, חלקיקים זעירים בצורות שונות, לכלוך ועוד.

 

ד"ר פנחסיק מסבירה: "ככל שמערכות רובוטיות הופכות קטנות יותר, הן מושפעות יותר מכוחות פני שטח. למשל, הכוחות שגורמים לחרקים קטנים להיכלא בפני השטח של מים בלי יכולת להשתחרר. במקרה הזה הפכנו את החיסרון ליתרון – רתמנו כוחות פני שטח אלה על מנת לבצע מטלות הכרוכות בהזזת חפצים קטנים וקלים, מסדר גודל של מילימטר ומטה".

 

לשאוב השראה מהטבע

"הצלחנו לחקות עקרון פעולה של חרקים ולתרגם אותו לתהליך מכני מבוקר שניתן ליישום טכנולוגי. בנוסף, הראינו כי אפשר לקפל יריעות דקות מתחת למים, בדומה לאוריגמי, על ידי שימוש בבועות אוויר. ככל הידוע, לא קיים מנגנון הדבקה או אחיזה אשר מסוגל לבצע את כל הפעולות הללו על מגוון כה גדול של חלקיקים וחפצים מזעריים, וזאת ללא שימוש בדבק ובצורה מדויקת, פשוטה וגם הפיכה, שכן ניתן לשאוב את האוויר הכלוא בזמן ובמקום המתאים וכך לשחרר את החלקיקים מהדבקה".

 

בניגוד למנגנוני הצמדה והדבקה המבוססים על דבק כימי, במחקר זה אין שימוש בכימיקלים, ולכן במקרים שבהם זיהומים הם סיכון משמעותי, כמו למשל בהליכים רפואיים או ניסויים ביולוגיים, לא ניתן להכניס חומרים זרים לסביבת העבודה. הזרוע הרובוטית פותחת את האפשרות לנקות את סביבת העבודה הנוזלית מחלקיקי מזהמים, דבר שלא ניתן לביצוע על ידי זרועות רובוטיות קונבנציונליות.

 

ד"ר פנחסיק מסכמת: "במחקר שלנו אנו מתעניינים במערכות בטבע, בעיקר אצל חרקים, כדי לקבל השראה לפיתוח של מערכות רובוטיות קטנות, או כאלו שעושות שימוש בעקרונות פיזיקליים המשמשים את החרקים בטבע על מנת לשרוד ולבצע פעולות חשובות באוויר או במים. לשם כך, יש בקבוצה סטודנטים וסטודנטיות מהנדסה מכנית, הנדסה ביו-רפואית, הנדסת חומרים ופיזיקה. זה מה שנותן לנו יתרון גדול במחקר שהוא רב-תחומי ובמציאת רעיונות לא שגרתיים ופתרונות יצירתיים בתחום הרובוטיקה והחומרים, ואכן הצלחנו במקרה זה לחשוב מחוץ לקופסה ולהגיע לכלל הדגמה וביצוע איכותיים".

 

צפו בסרטון שמדגים את עיקרון הפעולה של הרובוט

מחקר

22.03.2022
איך נוצרים גלים בים?

חוקרים פיצחו את התעלומה המדעית באמצעות מודל תיאורטי

  • הנדסה וטכנולוגיה

"הנה בא עוד גל גדול, זהירות רק לא ליפול", שר דני סנדרסון לכל הגולשות והגולשים בים. אחת מתופעות הטבע הנפוצות והמוכרות ביותר היא היווצרות של גלי ים על ידי רוחות ומשבי אוויר, אבל מסתבר שלמרות שהתופעה המוכרת נחקרת כבר כ-150 שנה - עד היום לא נמצא עדיין המודל המתמטי המושלם שיתאר את תהליך המנגנון במלואו ויאומת בניסוי. חוקרים מאוניברסיטת תל אביב פיתחו מודל תאורטי חדשני וראשון מסוגו אשר שופך אור על התעלומה. המודל נועד להסביר את תהליך יצירת הגלים והוא נבחן בסדרת ניסויים מורכבים שבוצעו לאורך תקופה ארוכה. מסקנות המחקר פורץ הדרך יסייעו בפיתוח כלים לחיזוי אקלימי וליכולת ניבוי של תנועת מזהמים על פני המים.

 

אוסף של תדירויות

גלים מכניים ובכלל זה גלי מים, ניתנים לתיאור כאוסף של תדירויות, ממש כפי שניתן לפרוט מנגינה לתווים ולהרמוניות. המודלים הנפוצים ביותר כיום מתחשבים בגידול של הרמוניה בודדת, הבלתי יציבה ביותר, ומניחים שההתפתחות המרחבית שלה אחידה. המודל החדש שמציעים החוקרים מתחשב בכל ההרמוניות הבלתי יציבות ובמגבלות החלות עליהן, בהן מגבלת שבירה של הרמוניות תלולות מאוד, דעיכה הדרגתית כתוצאה מהסתרה של הרמוניות נמוכות על ידי גלים גבוהים יותר ומגבלת זמן התפתחות מרחבי. בכך, התאוריה החדשה מאפשרת לתאר את הסיטואציה הפיזיקלית באמינות גבוהה, בהשוואה למודלים הקודמים.

 

החוקרים שהובילו את המחקר הם פרופ' לב שמר וד"ר מיטל גבע ממעבדת גלי המים בבית הספר להנדסה מכנית שבפקולטה להנדסה ע"ש איבי ואלדר פליישמן. המחקר פורסם בכתב העת היוקרתי Physical Review Letters.

 

"התפתחות גלי רוח על פני המים היא תופעה מורכבת. אחת הסיבות להיעדר תאוריה כוללת של התהליך נובעת ממחסור בתוצאות ניסיוניות מפורטות. מדידות שדה גלים ורוח בים מוגבלות מאוד, בעיקר בשל חוסר היכולת לשלוט בתנאי הסביבה וקושי לבצע ניסויים בים הפתוח, אפילו בקרבת החוף", מסבירה ד"ר גבע. "במעבדת הגלים בבית הספר להנדסה מכנית קיימת מערכת ניסוי ייחודית ואוטונומית לבחינת האינטראקציה בין המים לרוח ומערכת זו מאפשרת איסוף של מידע מקיף על ההתנהגות במרחב ובזמן של פני המים תחת משטרי רוח שונים".

 

התגברו על הקושי התיאורטי

הבעייתיות המובנית בתורות הקודמות, ששימשו את החוקרים בתחום זה במשך כ-65 שנה, נובעת מההנחות הרבות עליהן הן התבססו וחוסר היכולת שלהן להתממש בצורה כמותית, מה שהגביל עד מאוד את יכולת החיזוי הפיזיקלית. החוקרים מוסיפים כי הקושי התאורטי שהיה קיים בפיתוח מודל שלם נבע מכך שבמים נוצרות צורות ותבניות דינמיות סבוכות שמגיבות אחת עם השנייה ומאופיינות במידה רבה של אקראיות בזמן ובמרחב התלת ממדי. כמו כן, מעורבים בבעיה שלל כוחות מכניים כמו כבידה, צמיגות ומתח פנים, ויש לקחת בחשבון את מעברי האנרגיה והתנע בין האוויר למים –  סוגיה לא טריוויאלית כלל במכניקת הזורמים.

 

"במחקר זה אנחנו משתמשים לראשונה במשוואות מדויקות ובשיטות מקובלות מתחום המכניקה סטטיסטית על מנת לנתח את התהליכים האקראיים והלא-ליניאריים שמתרחשים בעת היווצרות הגלים. למעשה, המודל המוצע הוא היחיד שמאפשר תיאור בזמן ובמרחב של שדה הגלים החל ממצב של פני מים חלקים ועד למצב סופי הקבוע בזמן, וחשוב מכל – זהו המודל הראשון שאומת באופן מלא מול תוצאות ניסיוניות ומתאר את התהליך לא רק איכותית, אלא גם כמותית", מפרטת ד"ר גבע על המודל החדש ויישומיו.

 

לחזות את תנועת הזיהום בים

"היווצרות גלי רוח היא תוצאה של אינטראקציה הדדית בין האוקיינוס לאטמוספירה ולכן יש לתהליך השפעה מכרעת על מעבר מסה, תנע ואנרגיה בממשק פני המים. בהתבסס על כך, אנו סבורים כי התיאור המוצע הוא צעד חשוב בשיפור במודלים לחיזוי מזג אויר בטווח קצר ושינוי אקלימי בטווחי זמנים ארוכים יותר. כמו כן, הבנת האינטראקציה תאפשר הערכה של תנאי סביבה המשפיעים על החיים בים ויכולת ניבוי של תנועת מזהמים על פני המים. עם המסקנות מהמחקר ניתן ללכת צעד אחד קדימה בתחומים הללו, שחשיבותם הולכת וגוברת בעידן משבר האקלים בו אנו חיים. מעבר לכך, תמיד נהדר לפתור תעלומות במדע ואנחנו שמחים על התוצאות", מסכמת ד"ר גבע.

 

יצוין כי מעבדת גלי המים בראשות פרופ' לב שמר משמשת מזה שנים גם לאימות של מודלים מתחומי דעת נוספים בהנדסה ובפיזיקה, בהן מספר תגליות חדשות שפורסמו לאחרונה כגון מיקוד חושך בדומה למיקור קרני אור, וכן מוליך גלים מסוג חדש, שתיהן פרי עבודתו של פרופ' עדי אריה מבית הספר להנדסת חשמל.

 

ד"ר מיטל גבע ופרופ' לב שמר

מחקר

16.02.2022
המיקרופלסטיק מגביר פי 10 את רעילותם של מזהמים אורגניים בסביבה

מחקר חדש חושף שהרעילות המוגברת עשויה לגרום לפגיעה קשה במערכת העיכול ובבריאות האדם

  • הנדסה וטכנולוגיה
  • סביבה וטבע

כולנו מודעים לנזק העצום שיש לחלקיקי הפלסטיק על הסביבה ועל חיינו. מיקרופלסטיק הוא שם כללי לחומרי פלסטיק שמופיעים בתצורה של חלקיקים וסיבים זעירים בגודל של עשרות מיקרונים עד מילימטרים אחדים. הם נמצאים כמעט בכל מקום: במקווי מים, בקרקעות, במוצרי מזון, בבקבוקי מים, ואפילו בקרחונים בקוטב הצפוני. החוקרים מסבירים שכיוון שהפלסטיק אינו חומר טבעי, הוא מתפרק לאט מאד בטבע בתהליך שנמשך לעתים אלפי שנים, ובמסגרת תהליך זה נוצרים אותם מיקרופלסטיקים. לאורך התהליך, חלקיקי המיקרופלסטיק פוגשים מזהמים סביבתיים שנספחים על פני השטח של חלקיקי המיקרופלסטיק, וכצמד, הם עשויים להוות איום עבור בריאות הסביבה והאדם. מחקר חדש שנערך באוניברסיטת תל אביב חושף כעת ממצא נוסף מבהיל לא פחות: בסביבה ימית, המיקרופלסטיק סופח ומרכז אליו חומרים אורגניים רעילים ובכך מגביר את הרעילות שלהם פי 10. דבר זה עשוי להביא לפגיעה קשה בבריאותנו.

 

מגנט למזהמים סביבתיים

המחקר נערך בהובלת ד"ר אינס צוקר מבית הספר להנדסה מכנית בפקולטה להנדסה ע"ש איבי ואלדר פליישמן, ומביה"ס לסביבה ולמדעי כדור הארץ ע"ש פורטר בפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר, ביחד עם הדוקטורנט אנדריי איתן רובין. המחקר פורסם לאחרונה בכתב העת היוקרתי Chemosphere.

 

במסגרת המחקר, בחנו החוקרים את כל התהליך שעובר המיקרופלסטיק, החל מהאינטראקציות שהוא מקיים עם מזהמים סביבתיים ועד לשחרור המזהמים ויצירת רעילות מוגברת. הם מצאו כי הספיחה של אותם מזהמים אורגניים על גבי המיקרופלסטיק מגבירה את הרעילות פי 10 וכן עשויה להביא לפגיעה קשה בבני האדם שיחשפו למזון ושתייה מזוהמים.

 

"במחקר זה הראינו שאפילו ריכוזים מאוד נמוכים של מזהמים סביבתיים, שאינם רעילים לאדם, הופכים לכאלה כאשר הם ספוחים על המיקרופלסטיק. הסיבה לכך היא שהמיקרופלסטיק מהווה מעין מגנט למזהמים סביבתיים, מרכז אותם על גבו, 'מסיע' אותם דרך מערכת העיכול שלנו, ומשחרר אותם בצורה מרוכזת באזורים מסוימים, ובכך גורם לרעילות מוגברת", מסבירה ד"ר צוקר.

 

"הצלחנו להראות לראשונה 'מסלול חיים' שלם של המיקרופלסטיק, מרגע השחרור שלו לסביבה, דרך ספיחה של מזהמים סביבתיים ועד לרעילות מוגברת באדם", מוסיף הדוקטורנט אנדריי איתן רובין. "כמויות הפסולת המושלכות לאוקיינוס מדי שנה הן עצומות. הדוגמה המוכרת ביותר היא 'אי הפלסטיק' באוקיינוס השקט, ששטחו גדול פי 80 משטחה של מדינת ישראל. אבל לא מדובר רק בבעיה מרוחקת. נתונים מראים כי חופי ישראל הם בין המזוהמים ביותר בפסולת מיקרופלסטיק. לכל אחד מחלקיקי המיקרופלסטיק שמופרשים באזורים הללו יש פוטנציאל נזק אדיר, שכן הם משמשים כפלטפורמה יעילה ויציבה לכל מזהם שיזדמן בדרכן להגיע אל החי והצומח שנמצא אי שם ביבשה".

 

מימין לשמאל: ד"ר עמית קומאר-סארקאר, ד"ר אינס צוקר והדוקטורנט אנדריי איתן רובין

 

סכנה מוחשית ומיידית

"גילינו כי באופן מפתיע למדי, שיכולת הספיחה של חלקיק מיקרופלסטיק מחומצן (התצורה של המיקרופלסטיק לאחר שעבר בלייה סביבתית), גבוהה משמעותית מחלקיק שאינו מחומצן. לאחר הטעינה של המיקרופלסטיק במזהמים הסביבתיים באמצעות מזון ומים מזוהמים, החלקיק הטעון עשוי להגיע למערכת העיכול. שם הוא משחרר את הרעלים בסמיכות לתאים של מערכת העיכול, ובכך מגביר את הרעילות של חומרים אלו. זוהי תזכורת כואבת נוספת להשלכות החמורות של זיהום הסביבה הימית והיבשתית בפסולת תעשייתית מסוכנת, שלצערנו רוויה בפלסטיק בעשרות השנים האחרונות. הסכנות אינן תאורטיות אלא מוחשיות מאי-פעם. אמנם יש לכך מודעות רבה, אך הצעדים המניעתיים בשטח עוד רחוקים מלהטביע חותם משמעותי".

מחקר

06.02.2022
חוקרים מאוניברסיטת תל אביב: הצלחנו לייצר חוט שדרה אנושי במעבדה

התקווה: תוך מספר שנים לאפשר לבני אדם משותקים לחזור לתפקוד

  • הנדסה וטכנולוגיה
  • רפואה ומדעי החיים

 

האם היום שבו אנשים משותקים יוכלו לעמוד על רגליהם ולצעוד מחדש קרוב משחשבנו? בפעם הראשונה בעולם חוקרים ממרכז סגול לביוטכנולוגיה רגנרטיבית באוניברסיטת תל אביב הצליחו להנדס חוט שדרה אנושי תלת ממדי ולהשתיל אותו בחיות מודל שסבלו משיתוק כרוני. התוצאות מרשימות ביותר: כ-80% מהעכברים המושתלים חזרו ללכת. כעת החוקרים נערכים לקראת השלב הבא של המחקר - ניסויים קליניים בבני אדם. המטרה להצליח תוך מספר שנים לייצר חוט שדרה אנושי שיאפשר לאנשים משותקים לחזור ולעמוד על הרגליים.

 

פריצת הדרך העולמית במחקר נערכה בהובלת קבוצת המחקר של פרופ' טל דביר ממרכז סגול לביוטכנולוגיה רגנרטיבית, בית ספר למחקר ביו-רפואי ולחקר הסרטן ע"ש שמוניס והמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב. צוות המעבדה של פרופ' דביר כולל את הדוקטורנטית ליאור ורטהיים ואת החוקרים ד"ר ראובן אדרי וד"ר יונה גולדשמיט. למחקר סייעו, בין השאר, פרופ' עירית גת-ויקס, גם מבית ספר למחקר ביו-רפואי ולחקר הסרטן ע"ש שמוניס, ופרופ' יניב אסף מבית הספר סגול למדעי המוח, וד"ר אנג'לה רובן מבית הספר למקצועות הבריאות ע"ש שטייר, כולם מאוניברסיטת תל אביב. תוצאות המחקר מתפרסמות היום בכתב העת היוקרתי Advanced Science.

 

צוות המחקר מימין לשמאל: ליאור ורטהיים, פרופ' טל דביר וד"ר יונה גולדשמיט (צילום: מרכז סגול לביוטכנולוגיה רגנרטיבית)

 

"הטכנולוגיה מתבססת על לקיחת ביופסיה קטנה של רקמת שומן ביטני מהמטופל", מסביר פרופ' דביר. "כמו כל רקמה בגוף שלנו, הרקמה הזאת מורכבת מהתאים ומהחומר החוץ-תאי, כמו קולגן וסוכרים. הפרדנו את התאים מהחומר החוץ-תאי, ובהנדסה גנטית החזרנו את התאים למצב הדומה לתאי גזע עובריים – כלומר, תאים שיכולים לאחר הכוונה מדויקת להפוך לכל סוגי התאים בגוף. במקביל, ייצרנו מהחומר החוץ-תאי ג'ל מותאם אישית לחולה, על מנת שלא לעורר תגובה חיסונית ודחייה של השתל לאחר ההשתלה. את תאי הגזע הכנסנו לתוך הג'ל, ובתהליך המחקה את ההתפתחות העוברית של חוט שדרה הפכנו את התאים לשתלים תלת-ממדיים של רשתות עיצביות המכילות תאי עצב מוטוריים".

 

 צלחות פטרי עם תרביות רקמה (צילום: מרכז סגול לביוטכנולוגיה רגנרטיבית)

 

רשת נוירונים (צילום: מרכז סגול לביוטכנולוגיה רגנרטיבית)

 

תהליך שיקומי מהיר בחיות המודל

את שתלי חוטי השדרה האנושיים השתילו פרופ' דביר וצוותו בחיות מודל שסבלו משיתוק. החיות נחלקו לשתי קבוצות: חיות מודל שסובלות משיתוק זמן יחסית קצר (המודל האקוטי) וחיות מודל שסובלות משיתוק ממושך, זמן המקביל לשנה שלמה בחיי אדם (המודל הכרוני). לאחר ההשתלה, 100% מהעכברים שסבלו משיתוק אקוטי ו-80% מהעכברים שסבלו משיתוק כרוני שבו ללכת.

 

"החיות עברו תהליך שיקומי מהיר, שבסופו הן הלכו יפה מאוד", מספר פרופ' דביר, "זאת הפעם הראשונה בעולם שבה רקמות מהונדסות מתאים וחומרים אנושיים המושתלות בחיות מודל משתקמות משיתוק כרוני, שהוא למעשה המודל הרלוונטי ביותר לטיפול בבני אדם משותקים. בעצם השתלנו חוטי שדרה אנושיים לחלוטין בעכברים, כאשר השאיפה שלנו היא כמובן להשתיל שתלים אנושיים בבני אדם. צריך להבין שיש בעולם מיליוני אנשים משותקים כתוצאה מפגיעות בחוט השדרה – ואין להם שום טיפול קיים. אותם אנשים אשר נפצעו בגיל צעיר מאוד, יאלצו עד יומם האחרון לשבת בכיסא גלגלים, עם כל העלויות הבריאותיות, החברתיות והכלכליות של שיתוק. המטרה שלנו היא לייצר שתלי חוט שדרה מותאמים אישית לכל משותק ומשותקת, להשתיל אותם, ולגרום לשיקום הרקמה הפגועה ללא חשש מדחייה".

 

על בסיס הטכנולוגיה המהפכנית להנדסת איברים שפותחה במעבדה, הוקמה ב-2019 חברת מטריסלף (matricelf.com), שכבר מייצרת את שתלי חוטי השדרה האנושיים ועתידה להשתילם במשותקים.

 

פרופ' דביר, ראש מרכז סגול לביוטכנולוגיה רגנרטיבית, מסכם: "אנחנו שואפים להגיע לניסויים קליניים בבני אדם בתוך מספר שנים, במטרה להעמיד את אותם אנשים על הרגליים. התוכנית הפרה-קלינית של החברה כבר נידונה עם ה-FDA. מאחר שמדובר בטכנולוגיה מתקדמת ברפואה רגנרטיבית, ומאחר שלמטופלים המשותקים אין כיום חלופה טיפולית, ישנו סיכוי סביר כי הטכנולוגיה תאושר יחסית במהירות".

מחקר

16.11.2021
משקרים במצח נחושה? הטכנולוגיה הזאת תחשוף אתכם

פיתוח חדש יאפשר לחשוף "שקרנים" על ידי תנועות של שרירי הפנים

 

  • הנדסה וטכנולוגיה
  • ניהול ומשפט

שקרים אולי לא מאריכים לנו את האף, אבל הם כן גורמים להפעלת שרירי הפנים בצורה בלתי נשלטת. לראשונה בעולם, חוקרים מאוניברסיטת תל אביב הצליחו לזהות 73% מהשקרים לפי כיווצי שרירי הפנים בעת אמירת השקר. בנוסף, החוקרים הצליחו לזהות שתי קבוצות של "שקרנים": אלה שהשקר מקפיץ להם את שרירי הלחי ואלה שמשקרים מעל הגבות. לטענת החוקרים, למחקר החדש השלכות רבות לגבי זיהוי שקרים בכל תחומי החיים, כמו ביטחון ופשיעה למשל.

 

המחקר נערך על ידי צוות מומחים מאוניברסיטת תל אביב, בהובלת פרופ' יעל חנין מבית הספר להנדסת חשמל ופרופ' דינו לוי מהפקולטה לניהול ע"ש קולר, ובהשתתפות ד"ר אנסטסיה שוסטר, ד"ר לילך אינזלברג, ד"ר אורי אוסמי והדוקטורנטית ליז איזקסון. המחקר פורסם בכתב העת היוקרתי Brain and Behavior.

 

איך בכל זאת אפשר לזהות שקר?

"מחקרים רבים הראו שאי אפשר באמת לזהות שקר, וכל האנשים שטוענים שהם יודעים לזהות 'פוקר פייס' – משלים את עצמם", מסביר פרופ' לוי. "יש מומחים, למשל חוקרי משטרה, שמצליחים קצת יותר, אבל רק קצת. ואילו הטכנולוגיה הקיימת של גלאי אמת בעייתית עד כדי כך שהיא אפילו לא קבילה בבית המשפט. תמיד אפשר ללמוד לשלוט על הדופק ולהערים על המכונה. מכל זה נובע שצריך טכנולוגיה אמינה ומדויקת יותר לזיהוי שקרים. הנחת יסוד אחת במחקר היא ששרירי פנים מתעוותים כשאנו משקרים, אלא שעד כה האלקטרודות פשוט לא היו רגישות מספיק כדי למדוד את העיוותים הללו".

 

המחקר החדש התאפשר הודות לפיתוח חדשני ופורץ דרך מהמעבדה של פרופ' יעל חנין: מדבקות המודפסות על משטחים רכים ומכילות אלקטרודות מיוחדות, המאפשרות לנטר ולמדוד את פעילות השרירים והעצבים. לפיתוח, שכבר ממוסחר דרך חברת X-trodes, יישומים רבים כמו ניטור שינה מהבית, זיהוי מוקדם של מחלות עצביות ושיקום, אבל הפעם החוקרים מאוניברסיטת תל אביב החליטו להשתמש בו בכיוון אחר: זיהוי שקרים.

 

במסגרת הניסוי, החוקרים הדביקו את האלקטרודות המיוחדות על שתי קבוצות שרירי פנים: שרירי הלחי הסמוכים לשפתיים והשרירים שמעל הגבות. הנסיינים נתבקשו לשבת אחד מול השני, כשלראשם אוזניות, שהשמיעו את המילים "קו" או עץ". כאשר נסיין אחד שמע "קו" ואמר "עץ", או שמע "עץ" ואמר "קו", הוא שיקר כמובן – והיושב מולו היה צריך לנסות ולזהות השקר.

 

בשלב השני, הנסיינים התחלפו, והמנחש התבקש להגיד אמת או שקר. כצפוי, המשתתפים בניסוי לא הצליחו לזהות אם שיקרו להם במובהקות סטטיסטית, אולם האותות החשמליים מפניהם אפשרו לחוקרים להגיע לתוצאה חסרת תקדים של זיהוי השקר ב-73% מהמקרים.

 

אז איך אתם משקרים - עם הלחי או עם המצח?

"מדובר במחקר ראשוני, ולכן השקר עצמו היה פשוט", אומר פרופ' לוי. "לרוב, כשאנחנו משקרים אנחנו מספרים סיפור ארוך יותר מ'קו' ו'עץ', עם מרכיבים של אמת ומרכיבים של שקר. אבל היתרון המחקרי כאן הוא שאנחנו ידענו מה נאמר באוזניות, כלומר ידענו מתי נאמר שקר ומתי אמת, וכך אימנו את התוכנה באמצעות למידת מכונה מתוחכמת לזהות שקרים לפי אותות ה-EMG באלקטרודות, והגענו לדיוק של 73% - לא מושלם, אבל טוב בהרבה מכל טכנולוגיה קיימת. תוצאה מעניינת אחרת הייתה שאנשים שונים משקרים באמצעות שרירים אחרים בפנים: חלק שיקרו עם שרירי הלחי וחלק עם השרירים שמעל הגבות".

 

לתוצאות הללו ייתכנו השלכות דרמטיות על היבטים רבים של חיינו, שכן המחקר הבסיסי לגבי הפיזיולוגיה של הפנים בעת אמירת השקר יכול לייתר את הצורך באלקטרודות ולאמן תוכנות וידאו לזהות שקרים לפי תנועות השרירים עצמם. "בבנק, בחדר החקירות, בנמל התעופה או סתם בריאיון עבודה בזום, מצלמות ברזולוציה גבוהה שאומנו לזהות את תנועות שרירי הפנים ידעו לזהות מתי אנחנו דוברי אמת ומתי שקר", מסכם פרופ' לוי. "ברגע שנעבור את השלב הניסויי, נאמן את התוכנות ונייתר את הצורך באלקטרודות, היישומים רבים ומגוונים".

 

"מחקרים רבים הראו שאי אפשר באמת לזהות שקר, וכל האנשים שטוענים שהם יודעים לזהות 'פוקר פייס' – משלים את עצמם", מסביר פרופ' לוי. "יש מומחים, למשל חוקרי משטרה, שמצליחים קצת יותר, אבל רק קצת. ואילו הטכנולוגיה הקיימת של גלאי אמת בעייתית עד כדי כך שהיא אפילו לא קבילה בבית המשפט. תמיד אפשר ללמוד לשלוט על הדופק ולהערים על המכונה. מכל זה נובע שצריך טכנולוגיה אמינה ומדויקת יותר לזיהוי שקרים. הנחת יסוד אחת במחקר היא ששרירי פנים מתעוותים כשאנו משקרים, אלא שעד כה האלקטרודות פשוט לא היו רגישות מספיק כדי למדוד את העיוותים הללו".

 

נגיף הקורונה בכלי דם

מחקר

04.11.2021
החמישייה הסודית

חוקרים הצליחו לזהות את חמשת חלבוני הנגיף שפוגעים בכלי הדם ועלולים להוביל להתקף לב או לשבץ

 

  • מוח
  • הנדסה וטכנולוגיה

כמעט שנתיים אחרי שהפכה למגפה עולמית שקטלה מיליוני בני אדם, עדיין לא נפתרה התעלומה אילו חלבונים בנגיף ה-SARA-CoV-19 אחראים לנזק החמור לכלי הדם, שעשוי אף להוביל להתקף לב או לשבץ. כעת, צוות מומחים בהובלת אוניברסיטת תל אביב הצליח לזהות לראשונה חמישה מתוך 29 החלבונים המרכיבים את הנגיף שאחראים לפגיעה בכלי הדם. החוקרים מקווים כי זיהוי החלבונים יסייע בפיתוח תרופות ייעודיות לקורונה ויביא להפחתת הפגיעה בכלי הדם.

 

נגיף פשוט אבל קטלני

נגיף הקורונה החדש הוא נגיף פשוט יחסית. הוא מורכב בסך הכול מ-29 חלבונים שונים (לעומת עשרות אלפי חלבונים שמייצר גוף האדם). החוקרים השתמשו ב-RNA של כל אחד מחלבוני הקורונה ובדקו את התגובה שנוצרת כאשר מחדירים את רצפי ה-RNA השונים לתאים אנושיים של כלי דם במעבדה, וכך הצליחו לזהות חמישה חלבוני קורונה שפוגעים בכלי הדם.

 

המחקר נערך בהובלת קבוצות המחקר של ד"ר בן מעוז מהמחלקה להנדסה ביו רפואית בפקולטה להנדסה ע"ש איבי ואלדר פליישמן ובית הספר סגול למדעי המוח, פרופ' אורי אשרי מבית הספר סגול למדעי המוח והפקולטה למדעי החיים ע"ש ג'ורג' ס' וייז, פרופ' רודד שרן מבית הספר למדעי המחשב ע"ש בלווטניק. במחקר השתתפו גם פרופ' יעקב נחמיאס מהמכון למדעי החיים באוניברסיטה העברית והחוקרים ד״ר רוסאנה ראוטי, ד״ר יעל ברדוגו והדוקטורנט מיישר שחוח מאוניברסיטת תל אביב. תוצאות המחקר החדש התפרסמו בכתב העת eLife.

 

מצינורות אטומים לרשתות חדירות

"אנחנו רואים שכיחות גבוהה מאוד של מחלות כלי דם וקרישת דם, דוגמת שבץ והתקף לב, בקרב חולי קורונה", מסביר ד"ר בן מעוז. "אנחנו רגילים לחשוב על קורונה כעל מחלה נשימתית בעיקרה, אבל האמת היא שחולי קורונה נמצאים בסיכון מוגבר עד פי שלושה לעבור שבץ או התקף לב למשל. כל העדויות מראות שהנגיף פוגע קשות בכלי הדם או בתאי האנדותל העוטפים את כלי הדם. אלא שעד היום התייחסו לנגיף כולו כאל מקשה אחת. אנחנו רצינו לגלות אילו חלבונים בתוך הנגיף אחראים לנזק הזה".

 

"כשנגיף הקורונה חודר לגוף, הוא מתחיל לייצר 29 חלבונים, נוצר נגיף חדש, הוא מייצר 29 חלבונים חדשים וכך הלאה", מסביר ד"ר מעוז. "בתהליך הזה, כלי הדם שלנו הופכים מצינורות אטומים למעין רשתות או חתיכות בד חדירות, ובמקביל חלה הגברה בקרישת הדם. אנחנו בדקנו ביסודיות את ההשפעה של כל אחד מ-29 החלבונים שהנגיף מבטא, והצלחנו לראשונה לזהות חמישה חלבונים ספציפיים שמחוללים את הנזק הגדול ביותר לתאי האנדותל ומכאן גם ליציבות ולתפקוד כלי הדם. בנוסף, השתמשנו במודל חישובי שפותח על ידי פרופ' שרן, המאפשר לשער ולזהות אילו מחלבוני הקורונה הם בעלי ההשפעה הגדולה ביותר על רקמות נוספות פרק לכלי הדם, וזאת מבלי שראינו אותם ב'פעולה' במעבדה".

 

לדברי ד"ר מעוז, לזיהוי החלבונים עשויות להיות השלכות משמעותיות במאבק במחלה. "המחקר שלנו יכול לסייע במציאת מטרות לתרופה שתשמש לעצירת פעילותו של הנגיף, או לפחות למזעור הנזק בכלי הדם".

 

מחקר

05.09.2021
אצות שגדלות בסמיכות לשפכי הנחלים יכולות לשמש כ"מתקן טיהור טבעי"

מחקר של אוניברסיטאות תל אביב וברקלי: חוות לגידולי אצות בשפכי נחלים מקטינות מאוד את ריכוזי החנקן ומונעות זיהום סביבתי

  • הנדסה וטכנולוגיה
  • סביבה וטבע

חנקן הוא דשן הכרחי לחקלאות יבשתית, אבל הוא בא עם תג מחיר סביבתי. ברגע שהחנקן מגיע לים הוא מתפזר אקראית ופוגע במערכות אקולוגיות שונות. כתוצאה מכך, המדינה מוציאה היום הרבה כסף על טיפול בריכוזי חנקן במים, ויש הסכמים בינלאומיים שמגבילים העמסת חנקן בימים, כולל בים תיכון.

 

מחקר חדש של אוניברסיטת תל אביב ואוניברסיטת ברקלי מציע מודל, ולפיו הקמת חוות לגידול אצות בסמיכות לשפכי הנחלים מקטינה מאוד את ריכוזי החנקן בנחל ומונעת זיהום סביבתי בנחלים ובימים. במסגרת המחקר, החוקרים בנו מודל של חוות אצות גדולה לגידול אצה חסנית ים תיכונית בסמיכות לשפך נחל אלכסנדר, מאות מטרים מהים הפתוח. נחל אלכסנדר נבחר משום שהוא מזרים חנקן מזהם מהשדות הסמוכים ומהיישובים במעלה הזרם לים התיכון. הנתונים עבור המודל נאספו במשך שנתיים מגידולים מבוקרים ומגידול במי ים.

 

המחקר נערך בהובלת הדוקטורנט מירון צולמן, בהנחיה משותפת של פרופ' אלכסנדר גולברג מבית הספר למדעי הסביבה ומדעי כדור הארץ ע"ש פורטר ושל פרופ' אלכסנדר ליברזון מבית הספר להנדסה מכנית באוניברסיטת תל אביב. המחקר נערך בשיתוף פרופ' בוריס רובינסקי מהפקולטה להנדסה מכנית באוניברסיטת ברקלי. המחקר פורסם בכתב העת היוקרתי Communications Biology.

 

"המעבדה שלי חוקרת תהליכים בסיסיים ומפתחת טכנולוגיות עבור חקלאות ימית", מסביר פרופ' גולברג. "אנחנו מפתחים טכנולוגיות לגידול אצות בים כדי לקבע פחמן ולמצות מהן חומרים שונים כמו חלבונים ועמילנים, במטרה לייצר את התוצרת החקלאית גם בים. במחקר הראנו שאם מגדלים את האצות בהתאם למודל שפיתחנו, בסמיכות לשפי הנחלים, הן יודעות לספוג את החנקן כך שיתאים לתקנים הסביבתיים, למנוע את התפזרותו במים ובכך לנטרל את הזיהום הסביבתי. בדרך זו, אנחנו למעשה מייצרים מעין "מתקן טיהור טבעי" שיש לו גם ערך אקולוגי משמעותי וגם ערך כלכלי, שכן ניתן למכור את האצות כביומסה לשימוש האדם.

 

גם רווחיות וגם ידידותיות לסביבה

החוקרים מוסיפים כי המודל המתמטי מצליח לנבא את תפוקות החוות ולקשור את תפוקת האצות והרכבן הכימי לריכוז החנקן בנחל. "המודל שלנו מאפשר לחקלאים ימיים, וגם לגופי ממשל וסביבה, לדעת מראש מה תהיה ההשפעה ומה יהיו התוצרים של חוות אצות גדולה – לפני שמקימים את החווה בפועל", מוסיף מירון צולמן. "בזכות המתמטיקה אנחנו יודעים לעשות את ההתאמות גם לחוות גידול גדולות ולמקסם את התועלת הסביבתית, לרבות ייצור כמויות החלבון הרצויות לנו מבחינה חקלאית".

 

"צריך להבין שכל העולם הולך לכיוון האנרגיה הירוקה, ואצות ים יכול להיות מקור משמעותי", מוסיף פרופ' ליברזון, "ובכל זאת אין היום חווה אחת עם היכולת הטכנולוגית והמדעית שהוכחנו. החסמים כאן הם גם מדעיים: אנחנו לא באמת יודעים מה תהיה ההשפעה של חווה ענקית על הסביבה הימית. זה כמו לעבור מגינת ירק ליד הבית לשדות אינסופיים של גידול חקלאי תעשייתי. המודל שלנו מספק כמה מהתשובות, בתקווה לשכנע את מקבלי ההחלטות שחוות כאלה יהיו גם רווחיות וגם ידידותיות לסביבה. ואפשר גם לדמיין תרחישים עוד יותר מרחיקי לכת. למשל, אנרגיה ירוקה. אם היינו יודעים לנצל את קצבי הגידול לאנרגיה באחוזים טובים יותר, היה אפשר לצאת לשיט של שנה עם קילוגרם אצות, לא להזדקק לדלק נוסף מעבר לייצור הביומסה בסביבה ימית".

 

"החיבור המעניין שאנחנו מציעים כאן הוא גידול אצות על חשבון הטיפול בחנקן", מסכם פרופ' גולדברג. "בעצם פיתחנו כלי תכנוני לבניית חוות של אצות בשפכי נחלים, שיאפשר גם לטפל בבעיה הסביבתית וגם להפיק תועלת כלכלית. אנחנו מציעים תכנון של חוות לגידול אצות בזרימות של נחלים עם הרבה חנקן מחקלאות, כדי לשקם את הנחל ולמנוע מהחנקן להגיע לים וגם כדי לגדל את האצות עצמן למאכל. באופן הזה החקלאות הימית משלימה את החקלאות היבשתית".

 

פרופ' תמיר טולר (צילום: רפאל בן מנשה)

מחקר

01.09.2021
המנבאות השקטות

חוקרים מאוניברסיטת תל אביב הוכיחו שמוטציות "שקטות" יכולות לנבא התפתחות של תאים סרטניים

  • הנדסה וטכנולוגיה

בגנום שלנו, כמו בכל גנום של כל יצור חי אחר, ישנן מוטציות שיכולות לשנות את רצף חומצות האמינו של החלבונים שמקודדים בגנום. מאחר שהחלבונים הללו אחראים על המנגנונים השונים בתא, מוטציות כאלה מעורבות בהפיכת התא הבריא לתא סרטני. לעומתן, יש מוטציות שלא משנות את חומצות האמינו, והן נקראות 'מוטציות שקטות'. בשנים האחרונות מצטברות הראיות לכך שמוטציות כאלה, הן בתוך והן מחוץ לאזור הקידוד הגנטי בתא, יכולות להשפיע על ביטוי גנים וכי ייתכן שהן קשורות להתפתחות ולהתפשטות של תאים סרטניים. עם זאת, עד כה לא נבדק כמותית האם המוטציות הללו יכולות לתרום לזיהוי סוג הסרטן ולניבוי סיכויי השרידות של החולה. חוקרים מהמחלקה להנדסה ביו-רפואית בפקולטה להנדסה ע"ש איבי ואלדר פליישמן וממכון זימין למחקר הנדסי משנה עולם, הצליחו לנבא את סוג הסרטן ואת שיעור התמותה ממנו, לפי מוטציות "שקטות" בגנומים הסרטניים. מדובר בהוכחת היתכנות שתוכל להציל חיים.

 

'השקטות' מנבאות לא פחות מ'הרגילות'

המחקר, שנערך בהובלת פרופ' תמיר טולר וסטודנטית המחקר טל גוטמן, מבוסס על כשלושה מיליון מוטציות מגנומים סרטניים של 9,915 חולים. במסגרתו ניסו החוקרים לבדוק האם הם יכולים לזהות את סוג הסרטן ולהעריך את שיעור התמותה ממנו 10 שנים לאחר האבחנה הראשונית, אך ורק על סמך המוטציות השקטות. הם מצאו כי יכולת הניבוי של המוטציות השקטות דומה בהרבה מיקרים לביצועי הניבוי המקובלים של המוטציות ה"רגילות".

 

בנוסף, ניסו החוקרים להעריך האם שילוב של מידע על מוטציות שקטות ורגילות יכולות לשפר יכולת הסיווג של סוג הסרטן, ומצאו כי המידע שמתקבל ממוטציות שקטות משפר את מרווח הטעות ב-68%. בסוגים מסוימים של סרטן מדובר בשיפור של עד 17% ביכולת הסיווג, כאשר שילוב שני סוגי המוטציה יכול לשפר את הפרוגנוזה בשיעור של עד 5%. תוצאות המחקר פורץ הדרך התפרסמו לאחרונה בכתב העת NPJ Genomic Medicine.

 

שקטות, אבל עושות רעש

"במשך שנים רבות התעלמו החוקרים מהמוטציות השקטות. אנחנו ערכנו לראשונה אנליזות לכ-10,000 גנומים סרטניים מכל הסוגים, והראינו שיש למוטציות השקטות ערך דיאגנוסטי, איזה סוג סרטן זה, וגם ערך פרוגנוסטי, כמה זמן החולה ישרוד", מסביר פרופ' טולר.

 

לדבריו, החומר הגנטי בתא מחזיק בשני סוגים של מידע: רצף חומצות האמינו שמיוצר והתזמון והכמות שמיוצרת מכל חלבון, כלומר הוויסות של תהליך הייצור. "אותן מוטציות שקטות יכולות להשפיע על הוויסות של ביטוי גנים, וזאת השפעה לא פחות חשובה מסוג החלבון שמיוצר. מן הסתם, אם התא מייצר הרבה פחות מחלבון מסוים – זה גרוע כמעט כמו למחוק אותו. השפעה נוספת היא קיפול החלבון. החלבון הוא מולקולה ארוכה שכוללת בדרך כלל מאות רבות של חומצות אמינו, כאשר הקיפול התלת ממדי של המולקולה מתחיל כבר כשהן מיוצרות בריבוזום (מבנה תוך-תאי שאחראי על ייצור החלבונים בתא). קצב הייצור של החלבון על ידי הריבוזום משפיע על הקיפול, והמוטציות השקטות יכולות להשפיע על קצב הייצור של החלבון ולכן על הקיפול שלו – קיפול שהוא משמעותי לתפקוד בפועל".

 

"בנוסף, יש מקרים שבהם המוטציות השקטות משפיעות על תהליך בשם שיחבור, שבו חתיכות מהחומר הגנטי נחתכות ליצירת הרצף הסופי שממנו ייווצר החלבון. בקיצור, מסתבר שהמוטציות השקטות האלה עושות הרבה מאוד רעש, ואנחנו הצלחנו לראשונה לכמת את ההשפעה שלהן", אומר פרופ' טולר.

 

להציל כמה שיותר חיים

כדי לבחון את השערתם ולכמת את השפעת המוטציות הללו, פרופ' טולר ועמיתיו השתמשו במידע גנטי ציבורי על גנומים סרטניים מהמכונים הלאומיים לבריאות (NIH) בארה"ב. החוקרים לקחו הנתונים על הגנום הסרטני וניסו בשיטות המבוססות על למידת מכונה לנבא מה סוג הסרטן וכמה שנים חי כל חולה לפי המוטציות השקטות. לאחר מכן הם השוו את התוצאות שקיבלו לנתוני האמת מהמאגר.

 

"לתוצאות המחקר מספר השלכות חשובות", אומר פרופ' טולר. "קודם כל, שימוש במוטציות שקטות בהחלט יכול לשפר מודלים שחוזים פרוגנוזה ומשמשים לסיווג. חשוב לציין שגם לשיפור של 17% יש משמעות גדולה מאוד, מפני שמאחורי המספרים האלה עומדים בני אדם שאנחנו אוהבים, ויום אחד אולי אנחנו עצמנו, לכן כל שיפור של אחוז הוא דרמטי".

 

"רופא שמגלה גרורות רוצה לדעת מה מקור הגרורה ומה מסלול התפתחות המחלה, כדי להתאים את הטיפול הטוב ביותר. אם, למשל, במקום דיאגנוסטיקה ופרוגנוסטיקה שגויות לחמישה מבין עשרה חולי סרטן נגיע למצב שבו שוגים רק בארבעה מכל עשרה חולי סרטן, זה יכול להיתרגם בסופו של דבר למיליוני חולים, שאולי ניתן להציל את חייהם. בנוסף, התוצאות שלנו מראות שרק על סמך מוטציות שקטות ניתן במקרים רבים לקבל ביצועי ניבוי דומים להסתמכות על מוטציות שהן לא שקטות. אלו תוצאות מעודדת, מכיוון שבשנים האחרונות מפותחות טכנולוגיות שמסווגות סרטן על סמך בדיקות דם לא פולשניות יחסית, המבוססות על אנליזה של חתיכות דנ"א ממקור סרטני. מאחר שרוב הדנ"א שלנו לא מקודד לחלבון, סביר להניח שרוב החתיכות מסוג זה שנדוג יכילו מוטציות שקטות".

 

למחקר החדש השלכות לכלל תחומי המחקר והטיפול האונקולוגי, ואחרי הוכחת ההיתכנות הזאת בכוונת החוקרים להקים סטארטאפ עם חממת "סאנרה", שיתמקד במוטציות השקטות ככלי רפואי לכל דבר ועניין.

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>