מה הקשר בין מתח חשמלי לגמישות מוחית?

מחקר חדש מצא לראשונה קשר ישיר ומובהק בין שינויים בקולטנים המצומדים לחלבון G לבין יכולתו של המוח להתרגל לשינויים חיצוניים

במוח שלנו יש כמות גדולה מאוד של קולטנים המצומדים לחלבון GPCR. הפעלה של חלבונים אלה גורמת לשרשרת תגובות כימיות בתוך התא. הם נפוצים מאוד במוח ומעורבים כמעט בכל פעילות מוחית, כגון למידה וזיכרון. תאי העצב בהם נפוצים ה- GPCRs, חווים שינויים במתח החשמלי שלהם. לפני 20 שנה, התגלה באופן מפתיע כי ה-GPCRs הינם תלויי-מתח, כלומר הם חשים את השינויים במתח החשמלי של תאי העצב ומשנים את תפקודם כתלות במתח. אולם, עד היום לא היה ברור אם לתלות במתח של חלבוני ה-GPCRs יש חשיבות פיזיולוגית המשפיעה על פעילות המוח, על התפיסה שלנו ועל התנהגות. למעשה, ההנחה הרווחת עד היום הייתה כי לתלות זו במתח אין שום חשיבות פיזיולוגית. המחקר החדש, שפורסם לאחרונה בכתב העת היוקרתי Nature Communications, נערך על ידי ד"ר משה פרנס וצוותו מהפקולטה לרפואה ע"ש סאקלר ובית הספר סגול למדעי המוח.

 

החלבון שמשפיע לנו על חוש הריח

ד"ר פרנס וצוותו חקרו באמצעות מערכת הריח של זבוב הפירות, האם התלות במתח של GPCRs חשובה לתפקוד המוח. לשם כך, החליטו החוקרים להתמקד בקולטן אחד ממשפחת קולטנים מצומדים לחלבון G (ששמו "מוסקריני מסוג א"). חלבון זה מעורב בין היתר בהתרגלות לריח, תהליך בו עוצמת התגובה לריח פוחתת בעקבות חשיפה מתמשכת אליו. בזכות מנגנון זה, לאחר שהות של כמה דקות בחדר עם ריח מובהק מפסיקים להריח אותו.

 

"תאי העצב מסוגלים לתקשר ביניהם. גמישות מוחית מתבטאת ביכולת של תאי העצב ליצור חיבורים חדשים אחד עם השני ולשנות חיבורים קיימים וכך להשפיע על ההתנהגות. חלבון מוסקריני מסוג א' מעורב בחיזוק הקשר בין תאי עצב, וחיזוק קשר זה גורם לזבובים להתרגל לריח ומעיד על גמישות מוחית תקינה", מסביר ד"ר פרנס.

 

במהלך המחקר, החוקרים הצליחו לנטרל את חיישן המתח של החלבון מוסקריני מסוג א' באמצעות עריכה גנטית, וכך לבטל את התלות שלו במתח החשמלי של תא העצב. החוקרים גילו בשיטות מולקולריות, גנטיות ופיזיולוגיות כי ביטול חיישן המתח גורמת למעשה לגמישות מוחית לא מבוקרת ועקב כך לתהליך התרגלות לריח מוגזם ולא מבוקר. "מצאנו שהקולטן המדובר מעורב מאוד בחיזוק הקשר הבין-תאי במוח, הרבה יותר ממה שחשבנו. כאשר ביטלנו את חיישן המתח שלו, הקשר בין תאי העצב התחזק יתר על המידה", מסביר ד"ר פרנס.

 

"ממצאים אלו משנים את תפיסתנו לגבי קולטנים מצומדים לחלבון G. עד היום לא התייחסו להשפעת מתח חשמלי על תפקודם ועל השלכותיה על גמישות המוח וההתנהגות. הקולטנים הללו מעורבים במערכות ובמחלות מוחיות רבות, וכעת גילינו מנגנון בקרה שניתן לנסות לבסס עליו טיפול תרופתי. בהמשך לכך, אנו ממשיכים לחקור קולטנים נוספים. סביר שלתלות שלהם במתח החשמלי יש חשיבות במערכות נוספות ולא רק במערכת הריח", הוא מסכם.

 

יצוין כי מחקרו זה של ד"ר פרנס מהווה חוליית המשך למחקר שערכו הוריו, פרופ' חנה פרנס ופרופ' יצחק פרנס המנוח, לפני כשני עשורים. הם היו הראשונים לגלות כי קולטני GPCR יכולים לחוש מתח חשמלי בתאים אך מחקרם נשאר ברמת החלבונים בלבד. המחקר הנוכחי של ד"ר פרנס וצוותו עובר לשלב הבא, מחבר מולקולות, מוח והתנהגות ומראה בפעם הראשונה כי ביטול יכולתם לחוש מתח חשמלי, משפיע על פעילות המוח ויכולתנו להסתגל לסביבה בצורה מיטבית.

 

ד"ר משה פרנס

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>